Перевод чисел из одной сс в другую. Перевод чисел из одной системы счисления в другую онлайн. Перевод целых чисел

Когда занимаешься настройками сетей различного масштаба и каждый день сталкиваешься с вычислениями – то такого рода шпаргалки заводить не обязательно, все и так делается на безусловном рефлексе. Но когда в сетях ковыряешься очень редко, то не всегда вспомнишь какая там маска в десятичной форме для префикса 21 или же какой адрес сети при этом же префиксе. В связи с этим я и решил написать несколько маленьких статей-шпаргалок по переводом чисел в различные системы счислений, сетевым адресам, маскам и т.п. В это части пойдет речь о переводи чисел в различные системы счислений.

1. Системы счислений

Когда вы занимаетесь чем-то связанным с компьютерными сетями и ИТ, вы по любому столкнетесь с этим понятием. И как толковый ИТ-шник вам нужно разбираться в этом хотя бы чу-чуть даже если на практике вы это будете применять очень редко.
Рассмотрим перевод каждой цифры из IP-адреса 98.251.16.138 в следующие системы счислений:

  • Двоичная
  • Восьмеричная
  • Десятичная
  • Шестнадцатеричная

1.1 Десятичная

Так как цифры записаны в десятичной, перевод с десятичной в десятичную пропустим 🙂

1.1.1 Десятичная → Двоичная

Как мы знаем двоичная система счисления используется практически во всех современных компьютерах и многих других вычислительных устройствах. Система очень проста – у нас есть только 0 и 1.
Для преобразования числа с десятиной в двоичную форму нужно использовать деление по модулю 2 (т.е. целочисленное деление на 2) в результате чего мы всегда будем иметь в остатке либо 1, либо 0. При этом результат записываем справа налево. Пример все поставит на свои места:


Рисунок 1.1 – Перевод чисел из десятичной в двоичную систему


Рисунок 1.2 – Перевод чисел из десятичной в двоичную систему

Опишу деление числа 98. Мы делим 98 на 2, в результате имеем 49 и остаток 0. Далее продолжаем деление и делим 49 на 2, в результате имеем 24 с остатком 1. И таким же образом добираемся до 1-ки или 0-ка в делимом. Затем результат записываем справа налево.

1.1.2 Десятичная → Восьмеричная

Восьмеричная система – это целочисленная система счисления с основанием 8. Т.е. все числа в ней представлены диапазоном 0 – 7 и для перевода с десятичной системы нужно использовать деление по модулю 8.


Рисунок 1.3 – Перевод чисел из десятичной в восьмеричную систему

Деление аналогично 2-чной системе.

1.1.3 Десятичная → Шестнадцатеричная

Шестнадцатеричная система почти полностью вытеснила восьмеричную систему. У нее основание 16, но используются десятичные цифры от 0 до 9 + латинские буквы от A(число 10) до F(число 15). С ней вы сталкиваетесь каждый раз, когда проверяете настройки сетевого адаптера — это МАС-адрес. Так же, когда используется IPv6.


Рисунок 1.4 – Перевод чисел из десятичной в шестнадцатеричную систему

1.2 Двоичная

В предыдущем примере мы перевели все десятичные числа в другие системы счислений, одна из которых двоичная. Теперь переведем каждое число с двоичной формы.

1.2.1 Двоичная → Десятичная

Для перевода чисел с двоичной формы в десятичную нужно знать два нюанса. Первый – у каждого нолика и единички есть множитель 2 в n-й степени, при котором n увеличивается справа налево ровно на единичку. Второй – после перемножения все числа нужно сложить и мы получим число в десятичной форме. В итого у нас будет формула такого вида:

D = (a n × p n-1) + (a n-1 × p n-2) + (a n-2 × p n-3) +…, (1.2.1)

Где,
D – это число в десятичной форме, которое мы ищем;
n – количество символов в двоичном числе;
a – число в двоичной форме на n-й позиции (т.е. первый символ, второй, и т.п.);
p – коэффициент, равный 2,8 или 16 в степени n (в зависимости от системы счисления)

К примеру возьмем число 110102. Смотрим на формулу и записываем:

  • Число состоит из 5 символов (n =5)
  • a 5 = 1, a 4 = 1, a 3 = 0, a 2 = 1, a 1 = 0

  • p = 2 (так как переводим из двоичной в десятичную)

В итоге имеем:

D = (1 × 2 5-1) + (1 × 2 5-2) + (0 × 2 5-3) + (1 × 2 5-4) + (0 × 2 5-5) = 16 + 8 + 0 + 2 + 0 = 26 10

Кто привык записывать справа на лево, форму будет выглядеть так:

D = (0 × 2 5-5) + (1 × 2 5-4) + (0 × 2 5-3) + (1 × 2 5-2) + (1 × 2 5-1) = 0 + 2 + 0 + 8 + 16 = 26 10

Но, как мы знаем, от перестановки слагаемых сумма не меняется. Давайте теперь переведем наши числа в десятичную форму.


Рисунок 1.5 – Перевод чисел из двоичной в десятичную систему

1.2.2 Двоичная → Восьмеричная

При переводе нам нужно двоичное число разбить на группы по три символа справа налево. Если последняя группа не состоит из трех символов, то мы просто возмещаем недостающие биты ноликами. К примеру:

10101001 = 0 10 101 001

1011100 = 00 1 011 100

Каждая группа битов – это одно из восьмеричных чисел. Чтобы узнать какое, нужно использовать написанную выше формулу 1.2.1 для каждой группы битов. В результате мы получим.


Рисунок 1.6 – Перевод чисел из двоичной в восьмеричную систему

1.2.3 Двоичная → Шестнадцатеричная

Здесь нам нужно двоичное число разбивать на группы по четыре символа справа налево с последующим дополнением недостающих битов группы ноликами, как писалось выше. Если последняя группа состоит из ноликов, то их нужно игнорировать.

110101011 = 000 1 1010 1011

1011100 = 0 101 1100

001010000 = 00 0101 0000 = 0101 0000

Каждая группа битов – это одно из шестнадцатеричных чисел. Используем формулу 1.2.1 для каждой группы битов.


Рисунок 1.7 – Перевод чисел из двоичной в шестнадцатеричную систему

1.3 Восьмеричная

В этой системе у нас могут возникнуть сложности только при переводе в 16-ричную систему, так как остальной перевод проходит гладко.

1.3.1 Восьмеричная → Двоичная

Каждое число в восьмеричной системе – это группа из трех битов в двоичной системе, как писалось выше. Для перевода нам нужно воспользоваться табличкой-шпаргалкой:


Рисунок 1.8 – Шпора по переводу чисел из восьмеричной системы

Используя эту табличку переведем наши числа в двоичную систему.


Рисунок 1.9 – Перевод чисел из восьмеричной в двоичную систему

Немного опишу вывод. Первое число у нас 142, значит будет три группы по три бита в каждой. Юзаем шпору и видим, что цифра 1 это 001, цифра 4 это 100 и цифра 2 это 010. В результате имеем число 001100010.

1.3.2 Восьмеричная → Десятичная

Здесь мы используем формулу 1.2.1 только с коэффициентом 8 (т.е. p=8). В результате имеем


Рисунок 1.10 – Перевод чисел из восьмеричной в десятеричную систему

  • Число состоит из 3 символов (n =3)
  • a 3 = 1, a 2 = 4, a 1 = 2

  • p = 8 (так как переводим из восьмеричной в десятичную)

В результате имеем:

D = (1 × 8 3-1) + (4 × 8 3-2) + (2 × 8 3-3) = 64 + 32 + 2 = 98 10

1.3.3 Восьмеричная → Шестнадцатеричная

Как писалось раньше, для перевода нам нужно сначала перевести числа в двоичную систему, потом с двоичной в шестнадцатеричную, поделив на группы по 4-ре бита. Можно использовать следующею шпору.


Рисунок 1.11 – Шпора по переводу чисел из шестнадцатеричной системы

Эта табличка поможет перевести из двоичной в шестнадцатеричную систему. Теперь переведем наши числа.


Рисунок 1.12 – Перевод чисел из восьмеричной в шестнадцатеричную систему

1.4 Шестнадцатеричная

В этой системе та же проблема, при переводе в восьмеричную. Но об этом позже.

1.4.1 Шестнадцатеричная → Двоичная

Каждое число в шестнадцатеричной системе – это группа из четырех битов в двоичной системе, как писалось выше. Для перевода нам можно воспользоваться табличкой-шпаргалкой, которая находиться выше. В результате:


Рисунок 1.13 – Перевод чисел из шестнадцатеричной в двоичную систему

Возьмем первое число – 62. Используя табличку (рис. 1.11) мы видим, что 6 это 0110, 2 это 0010, в результате имеем число 01100010.

1.4.2 Шестнадцатеричная → Десятичная

Здесь мы используем формулу 1.2.1 только с коэффициентом 16 (т.е. p=16). В результате имеем


Рисунок 1.14 – Перевод чисел из шестнадцатеричной в десятеричную систему

Возьмем первое число. Исходя из формулы 1.2.1:

  • Число состоит из 2 символов (n =2)
  • a 2 = 6, a 1 = 2

  • p = 16 (так как переводим из шестнадцатеричной в десятичную)

В результате имеем.

D = (6 × 16 2-1) + (2 × 16 2-2) = 96 + 2 = 98 10

1.4.3 Шестнадцатеричная → Восьмеричная

Для перевода в восьмеричную систему нужно сначала перевести в двоичную, затем разбить на группы по 3-и бита и воспользоваться табличкой (рис. 1.8). В результате:


Рисунок 1.15 – Перевод чисел из шестнадцатеричной в восьмеричную систему

В пойдет речь о IP-адресах, масках и сетях.

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку "Перевести". Теоретическую часть и численные примеры смотрите ниже.

Результат уже получен!

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Люди не сразу научились считать. Первобытное общество ориентировалось на незначительное число предметов - один или два. Все, что было больше, по умолчанию наименовалось "много". Именно это считается началом современной системы исчисления.

Краткая историческая справка

В процессе развития цивилизации у людей стала появляться необходимость разделять небольшие совокупности предметов, объединенные общими признаками. Стали возникать соответствующие понятия: "три", "четыре" и так далее до "семи". Однако это был закрытый, ограниченный ряд, последнее понятие в котором продолжало нести смысловую нагрузку более раннего "много". Ярким примером этого является народный фольклор, дошедший до нас в первозданном виде (например, пословица "Семь раз отмерь - один раз отрежь").

Возникновение сложных способов счета

С течением времени жизнь и все процессы деятельности людей усложнялись. Это привело, в свою очередь, к возникновению более сложной системы исчисления. При этом люди использовали для наглядности выражения простейшие инструменты счета. Находили они их вокруг себя: они чертили палочки на стенах пещеры подручными средствами, делали зарубки, выкладывали интересующие их числа из палок и камней - вот лишь небольшой список существовавшего тогда многообразия. В дальнейшем современными учеными данному виду было присвоено уникальное название "унарная система исчисления". Ее суть состоит в записи числа с применением единственного вида знаков. Сегодня это наиболее удобная система, позволяющая визуально сопоставлять количество предметов и знаков. Наибольшее распространение она получила в начальных классах школ (счетные палочки). Наследством "камешкового счета" можно смело считать современные аппараты в их различных модификациях. Интересно и возникновение современного слова "калькуляция", корни которого идут от латинского calculus, что переводится не иначе как "камешек".

Счет на пальцах

В условиях крайне скудного словарного запаса первобытного человека жесты довольно часто служили важным дополнением к передаваемой информации. Преимущество пальцев было в их универсальности и в постоянном нахождении с объектом, который хотел передать информацию. Однако здесь есть и существенные недостатки: значительная ограниченность и кратковременность передачи. Поэтому весь счет людей, пользовавшихся "пальцевым способом", ограничивался цифрами, кратными количеству пальцев: 5 - соответствует количеству пальцев на одной руке; 10 - на обеих руках; 20 - общее количество на руках и ногах. Благодаря сравнительно медленному развитию числового запаса данная система просуществовала достаточно долгий временной промежуток.

Первые усовершенствования

С развитием системы исчисления и расширением возможностей и потребностей человечества максимальным используемым числом в культурах многих народов стало 40. Под ним также понималось неопределенное (не поддающееся счету) количество. На Руси широкое распространение получило выражение "сорок сороков". Его смысл сводился к количеству предметов, которое невозможно посчитать. Следующая ступень развития - это появление числа 100. Далее началось деление на десятки. Впоследствии стали появляться числа 1000, 10 000 и так далее, каждое из которых несло смысловую нагрузку, аналогичную семи и сорока. В современном мире границы конечного счета не определены. На сегодняшний день введено универсальное понятие "бесконечность".

Целые и дробные числа

Современные системы исчисления за наименьшее количество предметов принимают единицу. В большинстве случаев она является неделимой величиной. Однако при более точных измерениях она также подвергается дроблению. Именно с этим связано появившееся на определенном этапе развития понятие дробного числа. Например, вавилонская система денег (весов) составляла 60 мин, что равнялось 1 талану. В свою очередь 1 мина приравнивалась к 60 шекелям. Именно на основе этого вавилонская математика широко применяла шестидесятеричное дробление. Широко используемые в России дроби пришли к нам от древних греков и индийцев. При этом сами записи идентичны индийским. Незначительное отличие составляет отсутствие у последних дробной черты. Греки сверху прописывали числитель, а снизу знаменатель. Индийский вариант написания дробей получил широкое развитие в Азии и Европе благодаря двум ученым: Мухаммеду Хорезмскому и Леонардо Фибоначчи. Римская система исчисления приравнивала 12 единиц, называемых унциями, к целому (1 асс), соответственно, в основе всех вычислений лежали двенадцатиричные дроби. Вместе с общепринятыми довольно часто применялись и специальные деления. Так, например, астрономами до XVII века применялись так называемые шестидесятиричные дроби, которые были впоследствии вытеснены десятичными (ввел в обиход Симон Стевин - ученый-инженер). В результате дальнейшего прогресса человечества возникла необходимость в еще более значительном расширении числового ряда. Так появились отрицательные, иррациональные и Знакомый всем ноль появился относительно недавно. Он начал применяться при введении в современные системы исчисления отрицательных чисел.

Использование непозиционного алфавита

Что представляет собой такой алфавит? Для данной системы исчисления характерно, что значение цифр не меняется от их расстановки. Непозиционному алфавиту свойственно наличие неограниченного количества элементов. В основе систем, строящихся на базе данного вида алфавита, лежит принцип аддитивности. Другими словами, общее значение числа состоит из суммы всех цифр, которые включает запись. Возникновение непозиционных систем произошло раньше позиционных. В зависимости от способа счета общее значение числа определяется как разность или сумма всех цифр, входящих в состав числа.

Существуют недостатки таких систем. Среди основных следует выделять:

  • введение новых цифр при формировании большого числа;
  • невозможность отразить отрицательные и дробные числа;
  • сложность выполнения арифметических действий.

В истории человечества применялись различные системы исчисления. Наиболее известными считаются: греческая, римская, алфавитная, унарная, древнеегипетская, вавилонская.

Один из наиболее распространенных способов счета

Сохранившаяся до наших дней практически в неизменном виде, является одной из самых известных. При помощи нее обозначаются различные даты, юбилейные в том числе. Также она нашла широкое применение в литературе, науке и других областях жизни. В римской системе исчисления используются всего семь букв каждая из которых соответствует определенному числу: I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

Возникновение

Само происхождение римских цифр непонятно, история не сохранила точных данных их появления. При этом несомненным является факт: значительное влияние на римскую нумерацию оказала пятеричная система исчисления чисел. Однако в латинском языке отсутствуют упоминания о ней. На этом основании возникла гипотеза о заимствовании древними римлянами своей системы у другого народа (предположительно, у этрусков).

Особенности

Запись всех целых чисел (до 5000) производится при помощи повторения описанных выше цифр. Ключевой особенностью является расположение знаков:

  • сложение происходит при том условии, что большее стоит перед меньшим (XI = 11);
  • вычитание происходит, если меньшая цифра стоит перед большей (IX = 9);
  • один и тот же знак не может стоять подряд более трех раз (например, 90 записывается ХС вместо LXXXX).

Недостатком ее является неудобство выполнения арифметических действий. При этом она просуществовала довольно долго и перестала использоваться в Европе в качестве основной системы исчисления сравнительно недавно - в 16-м веке.

Римская система исчисления не считается абсолютно непозиционной. Связано это с тем, что в ряде случаев происходит вычитание меньшей цифры из большей (например, IX = 9).

Способ счета в Древнем Египте

Третье тысячелетие до нашей эры считается моментом возникновения системы исчисления в Древнем Египте. Суть ее состояла в записи специальными знаками цифр 1, 10, 102, 104, 105, 106, 107. Все остальные числа записывались в виде комбинации данных исходных знаков. При этом существовало ограничение - каждая цифра должна была повторяться не более девяти раз. В основе этого способа счета, который современные ученые называют "непозиционная десятичная система исчисления", лежит простой принцип. Смысл его состоит в том, что написанное число равнялось сумме всех цифр, из которых оно состояло.

Унарный способ счета

Система исчисления, в которой при записи чисел использован один знак - I - называется унарной. Каждое последующее число получается в результате прибавления новой I к предыдущему. При этом количество таких I равно значению записанного при помощи них числа.

Восьмеричная система исчисления

Это позиционный способ счета, в основании которого лежит число 8. Для отображения чисел используется цифровой ряд от 0 до 7. Широкое применение данная система получила в производстве и использовании цифровых устройств. Основным ее преимуществом является легкий перевод чисел. Их можно преобразовать в и обратно. Данные манипуляции осуществляются благодаря замене чисел. Из восьмиричной системы они переводятся в двоичные триплеты (например, 28 = 0102, 68 = 1102). Данный способ счета был распространен в области компьютерного производства и программирования.

Шестнадцатиричная система исчисления

В последнее время в компьютерной сфере данный способ счета используется достаточно активно. В корне данной системы лежит основание - 16. Система исчисления, базирующаяся на нем, предполагает использование цифр от 0 до 9 и ряда букв латинского алфавита (от А до F), которые применяются для обозначения интервала от 1010 до 1510. Данный способ счета, как уже было отмечено, используется при производстве программного обеспечения и документации, связанной с компьютерами и их составляющими. Основано это на свойствах современного компьютера, основной единицей которого является 8-битная память. Ее удобно преобразовывать и записывать при помощи двух шестнадцатиричных цифр. Основоположником такого процесса явилась система IBM/360. Документация для нее была впервые переведена этим способом. Стандарт Юникода предусматривает запись любого символа в шестнадцатиричном виде с использованием не менее 4 цифр.

Способы записи

Математическое оформление способа счета основывается на указании его в нижнем индексе в десятичной системе. Пример, число 1444 записывается в виде 144410. Языки программирования для записи шестнадцатиричных систем имеют разные синтаксисы:


Заключение

Как изучаются Информатика - основная дисциплина, в рамках которой осуществляется накопление данных, процесс их оформления в удобный для потребления вид. С применением особых инструментов происходит оформление и перевод всей доступной информации в язык программирования. Он в дальнейшем используется при создании программного обеспечения и компьютерной документации. Изучая различные системы исчисления, информатика предполагает использование, как уже сказано было выше, разных инструментов. Многие из них способствуют осуществлению быстрого перевода чисел. Одним из таких "инструментов" является таблица систем исчисления. Пользоваться ею достаточно удобно. При помощи данных таблиц можно, например, быстро перевести число из шестнадцатиричной системы в двоичную, не обладая при этом специальными научными знаниями. Сегодня возможность осуществлять цифровые преобразования есть практически у каждого заинтересованного в этом человека, поскольку необходимые инструменты предлагаются пользователям на открытых ресурсах. Кроме того, существуют и программы онлайн-перевода. Это существенно упрощает задачу по преобразованию чисел и сокращает время операций.

При решении задач с помощью вычислительной техники исходные данные, как правило, задаются в десятичной СС, в этой же СС представляются и результаты, сами же операции выполняются в двоичной СС. Т. к. данные кодируются в двоичной СС, то возникает необходимость перевода чисел из десятичной СС в двоичную и наоборот.

Правило перевода из двоичной СС в десятичную можно сформулировать следующим образом: все цифры числа и основание СС заменяются их десятичными эквивалентами; число представляется в виде суммы произведений степеней на значения соответствующих позиций; затем производится арифметический подсчет.

Правила перевода чисел из десятичную в двоичную различны для целой и дробной частей числа.

Для перевода целого числа (или целой части смешанного числа) используется алгоритм последовательного деления исходного числа на основание новой СС (т. е. на 2), действия производятся в старой СС (в десятичной). Деление прекращается, когда очередное частное от деления станет равно 0. Остатки от деления, выписанные в обратном порядке, образуют результат.

Таким образом,

Для перевода дробной части числа используется алгоритм последовательного умножения на основание новой СС (на 2), действия производятся в старой СС (в десятичной), целые части чисел, полученные в результате умножения дают запись результата.

Умножение прекращается, либо когда дробная часть становится равна 0, либо, когда будет получена требуемая точность представления числа.

Аналогично переводятся позиционные числа и с другими основаниями СС.

5.3. Смешанные сс

В смешанных СС каждая цифра в СС с основанием Р записывается в виде цифры с основанием Q, (Q

(двоично-десятичная СС)

Аналогично рассмотренной двоично-десятичной СС можно использовать и другие смешанные СС при различных значениях PиQ(P- старшее основание СС,Q– младшее).

Отдельно рассматривается случай, когда
, гдеl– целое положительное число. В этом случае запись числа в смешанной СС совпадает с изображением этого числа в СС с основаниемQ. Например,
, т. е. запись шестнадцатеричного числа в смешанной двоично-шестнадцатеричной СС будет тождественна его записи в двоичной СС. Это свойство широко используется на практике для сокращенной записи чисел заданных в СС с небольшим основанием.

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ; ; и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

III

VII

VIII

XIII

XVIII

XIX

XXII

XXXIV

XXXIX

XCIX

200

438

649

999

1207

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

001

010

011

100

101

110

111

1000

1001

1010

1011

1100

1101

D http://viagrasstore.net/generic-viagra-soft/

1110

1111

10000

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

1024

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)